A dual-channel optical coherence tomography system with wavelengths in the visible and near-infrared light ranges can provide both structural and functional information for retinal microvasculature simultaneously. We applied this integrated system in an ongoing clinical study of patients with various retinal pathologies. Here, we present case study results of patients with diabetic retinopathy, central retinal vein occlusion, and sickle cell retinopathy compared to a healthy subject. For the first time, this comparison validates the system’s ability to detect structural anomalies in both en face and B-scan images with simultaneous retinal optical coherence tomography angiography and measurement of sO2 in parafoveal vessels that are around 20–30 µm in diameter. This integrated system represents a powerful instrument with potentially far-reaching clinical implications for the early detection and diagnosis of retinal vascular diseases.