Spatiotemporal assessment of climate elements in response to solar radiation changes is vital for understanding the interaction between solar energy budget and climate over Nigeria. In this work, the spatio-temporal assessment of climate changes in response to solar radiation budget was done using regression and correlation analysis on satellite remote sensing and gridded observation data. The satellite data sets include; the Top Net Solar radiation data, obtained from European Medium Range Weather Forecast Reanalysis version 5 data set (ERA5) and Extended Reconstructed Sea Surface (ERSST) data set. The gridded observation climate data sets were obtained from Climate Research Unit (CRU) of University of East Anglia. The 250 x 250 m Digital Elevation data sets were obtained from Shuttle Radar Topographic Mission (SRTM). Results showed the Top net solar radiation (J/m2), precipitation and temperature indicated trends (R-square values) of 8643.9 (0.08),-0.287 (0.06) and 0.019 (0.26) per year respectively. The correlation between Top net radiation and temperature shows, 7, 2 and 91% pixels to be negatively, zero and positively correlated while the correlation between Top net radiation and precipitation shows, 71, 8 and 21% pixels respectively to be negatively, zero and positively correlated. Results shows that there was no direct relationship between Elnino Southern Oscillation (ENSO) but arguably, temperature showed indirect relationship with Top net solar radiation. Also, residual analysis was applied to delineate areas that have no direct relationship between radiation and climate parameters.