Chondrogenesis in cartilage development and repair and cartilage degeneration in arthritis can be regulated by mechanical-load-induced physical factors such as tissue deformation, interstitial fluid flow and pressure, and electrical fields or streaming potentials. Previous animal and tissue explant studies have shown that time-varying dynamic tissue loading can increase the synthesis and deposition of matrix molecules in an amplitude-, frequency-, and spatially dependent manner. To provide information on the cell-level physical factors which may stimulate chondrocytes to increase production and export of aggrecan, the main proteoglycan component of the cartilage matrix, we characterized local changes in aggrecan synthesis within cyclically loaded tissue explant disks and compared those changes to values of predicted local physical factors. Aggrecan synthesis following a 23-h compression/radiolabel protocol was measured with a spatial resolution of ∼0.1 mm across the 1.5-mm radius of explanted disks using a quantitative autoradiography method. A uniform stimulation of aggrecan synthesis was observed at an intermediate frequency of 0.01 Hz, while, at a higher frequency of 0.1 Hz, stimulation was only seen at peripheral radial positions. Profiles of radial solid matrix deformation and interstitial fluid pressure and velocity predicted to be occurring across the radius of the disk during sinusoidal loading were estimated using a composite poroelastic model. Tissue regions experiencing high interstitial fluid velocities corresponded to those displaying increased aggrecan synthesis. These results reinforce the role of load-induced flow of interstitial fluid in the stimulation of aggrecan production during dynamic loading of cartilage.