This paper describes a study on the optimal location of a resistive superconducting fault current limiter (SFCL) applied to an electric power grid. The resistive SFCL, which is designed to provide the quick system protection in the event of a fault, can have different effects on the planning and operation of a power system depending on its location. To select the optimal location of the SFCL, the sensitivity analysis of power changes and/or power losses in the system with respect to its resistive value occurred in series with a transmission line during a fault is introduced. Moreover, the optimal location determined by the proposed method is coordinated with the corresponding optimal resistive value of the SFCL to improve low-frequency oscillation damping performance of the system. The IEEE benchmarked four-machine, two-area test system is used to evaluate the effectiveness of the proposed method with the case studies based on time-domain simulation.