[HTML][HTML] Sub-8 nm networked cage nanofilm with tunable nanofluidic channels for adaptive sieving

SH Liu, JH Zhou, C Wu, P Zhang, X Cao… - Nature …, 2024 - nature.com
SH Liu, JH Zhou, C Wu, P Zhang, X Cao, JK Sun
Nature Communications, 2024nature.com
Biological cell membrane featuring smart mass-transport channels and sub-10 nm thickness
was viewed as the benchmark inspiring the design of separation membranes; however,
constructing highly connective and adaptive pore channels over large-area membranes less
than 10 nm in thickness is still a huge challenge. Here, we report the design and fabrication
of sub-8 nm networked cage nanofilms that comprise of tunable, responsive organic cage-
based water channels via a free-interface-confined self-assembly and crosslinking strategy …
Abstract
Biological cell membrane featuring smart mass-transport channels and sub-10 nm thickness was viewed as the benchmark inspiring the design of separation membranes; however, constructing highly connective and adaptive pore channels over large-area membranes less than 10 nm in thickness is still a huge challenge. Here, we report the design and fabrication of sub-8 nm networked cage nanofilms that comprise of tunable, responsive organic cage-based water channels via a free-interface-confined self-assembly and crosslinking strategy. These cage-bearing composite membranes display outstanding water permeability at the 10−5 cm2 s−1 scale, which is 1–2 orders of magnitude higher than that of traditional polymeric membranes. Furthermore, the channel microenvironments including hydrophilicity and steric hindrance can be manipulated by a simple anion exchange strategy. In particular, through ionically associating light-responsive anions to cage windows, such ‘smart’ membrane can even perform graded molecular sieving. The emergence of these networked cage-nanofilms provides an avenue for developing bio-inspired ultrathin membranes toward smart separation.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果