Misincorporation of d-tyrosine (d-Tyr) into cellular proteins due to mischarging of tRNATyr with d-Tyr by tyrosyl-tRNA synthetase inhibits growth and biofilm formation of Bacillus subtilis. Furthermore, many B. subtilis strains lack a functional gene encoding d-aminoacyl-tRNA deacylase, which prevents misincorporation of d-Tyr in most organisms. B. subtilis has two genes that encode tyrosyl-tRNA synthetase: tyrS is expressed under normal growth conditions, and tyrZ is known to be expressed only when tyrS is inactivated by mutation. We hypothesized that tyrZ encodes an alternate tyrosyl-tRNA synthetase, expression of which allows the cell to grow when d-Tyr is present. We show that TyrZ is more selective for l-Tyr over d-Tyr than is TyrS; however, TyrZ is less efficient overall. We also show that expression of tyrZ is required for growth and biofilm formation in the presence of d-Tyr. Both tyrS and tyrZ are preceded by a T box riboswitch, but tyrZ is found in an operon with ywaE, which is predicted to encode a MarR family transcriptional regulator. Expression of tyrZ is repressed by YwaE and also is regulated at the level of transcription attenuation by the T box riboswitch. We conclude that expression of tyrZ may allow growth when excess d-Tyr is present.
IMPORTANCE Accurate protein synthesis requires correct aminoacylation of each tRNA with the cognate amino acid and discrimination against related compounds. Bacillus subtilis produces d-Tyr, an analog of l-Tyr that is toxic when incorporated into protein, during stationary phase. Most organisms utilize a d-aminoacyl-tRNA deacylase to prevent misincorporation of d-Tyr. This work demonstrates that the increased selectivity of the TyrZ form of tyrosyl-tRNA synthetase may provide a mechanism by which B. subtilis prevents misincorporation of d-Tyr in the absence of a functional d-aminoacyl-tRNA deacylase gene.