On-site and off-site environmental impacts of runoff and erosion are usually stressed in order to bring to the public's attention the importance and implications of soil erosion. However, few studies are aimed at calculating the economic implications of erosion, this being the message that farmers and/or policy makers understand best. In this current work we estimated the cost of erosion in vineyards in the Penedès–Anoia region (NE Spain), in which high intensity rain storms (>80–100 mm h−1) are frequent. Modern plantations in the region consist of trained vines, usually planted perpendicular to the maximum slope direction. Broadbase terraces are interspersed between vine rows to intercept surface runoff and convey it out of the field. Part of the sediment generated above these terraces is deposited in them and other parts are either deposited beyond the boundaries of the fields or are exported to the main drainage network. High intensity rainfall produces heavy soil losses (up to 207 Mg ha−1 computed in an extreme event in June 2000, which had a maximum intensity in 30-min periods of up to 170 mm h−1). To estimate the cost of erosion in vineyard fields of this region, two important aspects were considered. These were a) the cost incurred by the maintenance of the broadbase terraces, drainage channels and filling of ephemeral gullies and b) the cost incurred by the loss of fertilisers (mainly N and P) caused by erosion. According to farmers' records, the former was estimated at 7.5 tractor-hour ha−1 year−1 (as average), which comprises 5.4% of the income from grape sales. Regarding N and P losses, nutrients exported by runoff were 14.9 kg ha−1 N and 11.5 kg ha−1 of P, which, if compared to the annual intakes, represent 6% and 26.1% of the N and P respectively. In economic terms, the replacement value of the N and P lost represents 2.4% for N or 1.2% for P of the annual income from the sale of the grapes.