The augmentation of pollination success in lemon (Citrus limon Eureka) flowers remains contingent on the involvement of bee pollinators. With wild bee pollinator populations declining in agroecosystems, meliponiculture has emerged as a potential option in Indonesia. This study aimed to investigate the effects of meliponicultural use of Tetragonula laeviceps on diversity, foraging behavior, and monthly population of bee pollinators, as well as lemon pollination efficacy with and without meliponiculture treatment during two periods. Using scan and focal sampling methods in first and second periods, the study found that the diversity of wild bee pollinators was six species (Apis cerana, Lasioglossum albescens, Megachile laticeps, Xylocopa confusa, Xylocopa latipes, and Xylocopa caerulea), and T. laeviceps when using meliponiculture. The relative abundance and daily foraging activity of wild bee pollinators were initially reduced in the first period (March–June) and then maintained in the second period (July–October). T. laeviceps foraged on the flowers, involving specific sequences for 72 s with highest visitation rate of 0.25 flowers/h from 10: 00–13: 00. Light intensity was observed to be the most influential factor for bee pollinator density. Pollination efficacy results showed that meliponiculture usage has greater benefit compared to meliponiculture absence across various parameters, including fruit sets, fruit weight, yield, and estimated productivity. The effects of meliponicultural use of T. laeviceps can enhance lemon pollination efficacy while preserving the diversity of wild insect pollinators. This suggests that meliponiculture stingless bees could be a beneficial practice in agroecosystems, especially in tropical regions where wild bee populations and diversity are declining.