The human nucleoporin Tpr protects cells from RNA-mediated replication stress

M Kosar, M Giannattasio, D Piccini… - Nature …, 2021 - nature.com
M Kosar, M Giannattasio, D Piccini, A Maya-Mendoza, F García-Benítez, J Bartkova…
Nature Communications, 2021nature.com
Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly
understood. Here we show that Tpr depletion generates transcription-dependent replication
stress, DNA breaks, and genomic instability. DNA fiber assays and electron microscopy
visualization of replication intermediates show that Tpr deficient cells exhibit slow and
asymmetric replication forks under replication stress. Tpr deficiency evokes enhanced levels
of DNA-RNA hybrids. Additionally, complementary proteomic strategies identify a network of …
Abstract
Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly understood. Here we show that Tpr depletion generates transcription-dependent replication stress, DNA breaks, and genomic instability. DNA fiber assays and electron microscopy visualization of replication intermediates show that Tpr deficient cells exhibit slow and asymmetric replication forks under replication stress. Tpr deficiency evokes enhanced levels of DNA-RNA hybrids. Additionally, complementary proteomic strategies identify a network of Tpr-interacting proteins mediating RNA processing, such as MATR3 and SUGP2, and functional experiments confirm that their depletion trigger cellular phenotypes shared with Tpr deficiency. Mechanistic studies reveal the interplay of Tpr with GANP, a component of the TREX-2 complex. The Tpr-GANP interaction is supported by their shared protein level alterations in a cohort of ovarian carcinomas. Our results reveal links between nucleoporins, DNA transcription and replication, and the existence of a network physically connecting replication forks with transcription, splicing, and mRNA export machinery.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果