Unified structural representation of the southern California crust and upper mantle

JH Shaw, A Plesch, C Tape, MP Suess… - Earth and Planetary …, 2015 - Elsevier
JH Shaw, A Plesch, C Tape, MP Suess, TH Jordan, G Ely, E Hauksson, J Tromp, T Tanimoto
Earth and Planetary Science Letters, 2015Elsevier
We present a new, 3D description of crust and upper mantle velocity structure in southern
California implemented as a Unified Structural Representation (USR). The USR is
comprised of detailed basin velocity descriptions that are based on tens of thousands of
direct velocity (Vp, Vs) measurements and incorporates the locations and displacement of
major fault zones that influence basin structure. These basin descriptions were used to
developed tomographic models of crust and upper mantle velocity and density structure …
Abstract
We present a new, 3D description of crust and upper mantle velocity structure in southern California implemented as a Unified Structural Representation (USR). The USR is comprised of detailed basin velocity descriptions that are based on tens of thousands of direct velocity (Vp, Vs) measurements and incorporates the locations and displacement of major fault zones that influence basin structure. These basin descriptions were used to developed tomographic models of crust and upper mantle velocity and density structure, which were subsequently iterated and improved using 3D waveform adjoint tomography. A geotechnical layer (GTL) based on Vs30 measurements and consistent with the underlying velocity descriptions was also developed as an optional model component. The resulting model provides a detailed description of the structure of the southern California crust and upper mantle that reflects the complex tectonic history of the region. The crust thickens eastward as Moho depth varies from 10 to 40 km reflecting the transition from oceanic to continental crust. Deep sedimentary basins and underlying areas of thin crust reflect Neogene extensional tectonics overprinted by transpressional deformation and rapid sediment deposition since the late Pliocene. To illustrate the impact of this complex structure on strong ground motion forecasting, we simulate rupture of a proposed M 7.9 earthquake source in the Western Transverse Ranges. The results show distinct basin amplification and focusing of energy that reflects crustal structure described by the USR that is not captured by simpler velocity descriptions. We anticipate that the USR will be useful for a broad range of simulation and modeling efforts, including strong ground motion forecasting, dynamic rupture simulations, and fault system modeling. The USR is available through the Southern California Earthquake Center (SCEC) website (http://www.scec.org).
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果