Cryptococcosis is a leading mycological cause of mortality among immunologically compromised individuals. In order to develop an effective vaccine against Cryptococcus neoformans, the cytosolic proteins (Cp) of the pathogen have been used as an antigen in combination with different formulations. In the present study, we have demonstrated that Cp encapsulated poly-lactide co-glycolide (PLGA) microsphere further co-encapsulated into the biocompatible fibrin cross-linked plasma beads (Fib-PLGA-Cp) mediated cytosolic delivery elicited strong immune response in the BALB/c mice. In contrast, other formulations of Cp failed to impart significant level of protection. The immune response, involved with Fib-PLGA-Cp protection, appear to interact with the target cells by both endocytosis as well as membrane fusion mode, thus helping in the activation of both CD4+ and CD8+ T-cells. Analysis of cytokine profiles in immunized animals revealed that the protective response was associated with the Th1/Th2 polarization in favor of type-1 cytokine [interferons (IFN)-γ and interleukin (IL)-2] cells. Furthermore, vaccination with Fib-PLGA-Cp elicited high immunoglobulin (Ig) Gl and IgG2a isotype response; successfully cleared fungal burden in vital organs and also increased the survival rate of immunized animals. Altogether the present study is a clear indicative of the possible use of fibrin microsphere-based targeted delivery of cytosolic proteins to induce protective immune responses against experimental murine cryptococcosis.