Introduction
A new system has been developed to assess global end-diastolic volume (GEDV), a volumetric marker of cardiac preload, and extravascular lung water (EVLW) from a transpulmonary thermodilution curve. Our goal was to compare this new system with the system currently in clinical use.
Methods
Eleven anesthetized and mechanically ventilated pigs were instrumented with a central venous catheter and a right (PulsioCath; Pulsion, Munich, Germany) and a left (VolumeView™; Edwards Lifesciences, Irvine, CA, USA) thermistor-tipped femoral arterial catheter. The right femoral catheter was used to measure GEDV and EVLW using the PiCCO2™ (Pulsion) method (GEDV1 and EVLW1, respectively). The left femoral catheter was used to measure the same parameters using the new VolumeView™ (Edwards Lifesciences) method (GEDV2 and EVLW2, respectively). Measurements were made during inotropic stimulation (dobutamine), during hypovolemia (bleeding), during hypervolemia (fluid overload), and after inducing acute lung injury (intravenous oleic acid).
Results
One hundred and thirty-seven paired measurements were analyzed. GEDV1 and GEDV2 ranged from 701 to 1,629 ml and from 774 to 1,645 ml, respectively. GEDV1 and GEDV2 were closely correlated (r2 = 0.79), with mean bias of -11 ± 80 ml and percentage error of 14%. EVLW1 and EVLW2 ranged from 507 to 2,379 ml and from 495 to 2,222 ml, respectively. EVLW1 and EVLW2 were closely correlated (r2 = 0.97), with mean bias of -5 ± 72 ml and percentage error of 15%.
Conclusions
In animals, and over a very wide range of values, a good agreement was found between the new VolumeView™ system and the PiCCO™ system to assess GEDV and EVLW.