Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway

GA Jung, JY Yoon, BS Moon, DH Yang, HY Kim… - BMC cell biology, 2008 - Springer
GA Jung, JY Yoon, BS Moon, DH Yang, HY Kim, SH Lee, V Bryja, E Arenas, KY Choi
BMC cell biology, 2008Springer
Background Valproic acid (VPA), a commonly used mood stabilizer that promotes neuronal
differentiation, regulates multiple signaling pathways involving extracellular signal-regulated
kinase (ERK) and glycogen synthase kinase3β (GSK3β). However, the mechanism by which
VPA promotes differentiation is not understood. Results We report here that 1 mM VPA
simultaneously induces differentiation and reduces proliferation of basic fibroblast growth
factor (bFGF)-treated embryonic day 14 (E14) rat cerebral cortex neural progenitor cells …
Background
Valproic acid (VPA), a commonly used mood stabilizer that promotes neuronal differentiation, regulates multiple signaling pathways involving extracellular signal-regulated kinase (ERK) and glycogen synthase kinase3β (GSK3β). However, the mechanism by which VPA promotes differentiation is not understood.
Results
We report here that 1 mM VPA simultaneously induces differentiation and reduces proliferation of basic fibroblast growth factor (bFGF)-treated embryonic day 14 (E14) rat cerebral cortex neural progenitor cells (NPCs). The effects of VPA on the regulation of differentiation and inhibition of proliferation occur via the ERK-p21Cip/WAF1 pathway. These effects, however, are not mediated by the pathway involving the epidermal growth factor receptor (EGFR) but via the pathway which stabilizes Ras through β-catenin signaling. Stimulation of differentiation and inhibition of proliferation in NPCs by VPA occur independently and the β-catenin-Ras-ERK-p21Cip/WAF1 pathway is involved in both processes. The independent regulation of differentiation and proliferation in NPCs by VPA was also demonstrated in vivo in the cerebral cortex of developing rat embryos.
Conclusion
We propose that this mechanism of VPA action may contribute to an explanation of its anti-tumor and neuroprotective effects, as well as elucidate its role in the independent regulation of differentiation and inhibition of proliferation in the cerebral cortex of developing rat embryos.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References