Vibration of laminated composites and sandwich shells based on higher order zigzag theory

A Kumar, A Chakrabarti, P Bhargava - Engineering Structures, 2013 - Elsevier
Engineering Structures, 2013Elsevier
Free vibration response of laminated composite and sandwich shell is studied by using an
efficient 2D FE (finite element) model based on higher order zigzag theory (HOZT). This is
the first finite element implementation of the HOZT to solve the vibration problem of shells
incorporating all three radii of curvatures including the effect of cross curvature in the
formulation using Sanders' approximations. The proposed finite element model satisfies the
inter-laminar shear stress continuity at the interfaces in addition to higher order theory …
Abstract
Free vibration response of laminated composite and sandwich shell is studied by using an efficient 2D FE (finite element) model based on higher order zigzag theory (HOZT). This is the first finite element implementation of the HOZT to solve the vibration problem of shells incorporating all three radii of curvatures including the effect of cross curvature in the formulation using Sanders’ approximations. The proposed finite element model satisfies the inter-laminar shear stress continuity at the interfaces in addition to higher order theory features, hence most suitable to model sandwich shells along with composite shells. The C0 finite element formulation has been done efficiently to overcome the problem of C1 continuity associated with the HOZT. The present model can also analyze shells with cross curvature like hypar shells, etc., besides normal curvature shells like cylindrical, and spherical shells. The numerical studies show that the present 2D FE model is more accurate than existing FE models based on first and higher order theories for predicting results close to those obtained by 3D elasticity solutions for laminated composite and sandwich shallow shells. Many new results are presented by varying different parameters which should be useful for future research.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果