Video analytics for detecting motorcyclist helmet rule violations

CM Tsai, JW Hsieh, MC Chang… - Proceedings of the …, 2023 - openaccess.thecvf.com
CM Tsai, JW Hsieh, MC Chang, GL He, PY Chen, WT Chang, YK Hsieh
Proceedings of the IEEE/CVF Conference on Computer Vision and …, 2023openaccess.thecvf.com
The use of helmets is essential for motorcyclists' safety, but non-compliance with helmet
rules remains a common issue. In this study, we extend the frontier of AI video analytic
technologies for detecting violations of helmet rules among motorcyclists. Our method can
handle highly challenging conditions for traditional methods, including occlusions, fast
vehicle movement, shadows, large viewing angles, poor illumination and weather
conditions. We adopt the widely used YOLOv7 object detector and develop a first baseline …
Abstract
The use of helmets is essential for motorcyclists' safety, but non-compliance with helmet rules remains a common issue. In this study, we extend the frontier of AI video analytic technologies for detecting violations of helmet rules among motorcyclists. Our method can handle highly challenging conditions for traditional methods, including occlusions, fast vehicle movement, shadows, large viewing angles, poor illumination and weather conditions. We adopt the widely used YOLOv7 object detector and develop a first baseline using YOLOv7-E6E. We further develop two improved versions, namely YOLOv7-CBAM and YOLOv7-SimAM that better address the challenges. Experiments are performed on the 2023 AI City Challenge Track 5 contest benchmark. Evaluation on the 100 test videos of the contest demonstrates the effectiveness of our approach. The baseline YOLOv7-E6E model trained with image size 1920 achieves 0.6112 mAP. The YOLOv7-CBAM achieves 0.6389 mAP, and YOLOv7-SimAM achieves 0.6422 mAP, where both are trained with image size 1280. These models rank sixth, fifth, and fourth on the public leaderboard, respectively, which outperforms over 36 global participating teams. The code for our models is available at: https://github. com/cmtsai2023/AICITY2023_Track5_DVHRM.
openaccess.thecvf.com
以上显示的是最相近的搜索结果。 查看全部搜索结果