Worst-case losses from a cylindrical calorimeter for solar simulator calibration

SC Rowe, AJ Groehn, AW Palumbo, BA Chubukov… - Optics …, 2015 - opg.optica.org
SC Rowe, AJ Groehn, AW Palumbo, BA Chubukov, DE Clough, AW Weimer, I Hischier
Optics Express, 2015opg.optica.org
High-flux solar simulators consist of lamps that mimic concentrated sunlight from a field of
heliostats or parabolic dish. These installations are used to test promising solar-thermal
technologies for commercial potential. Solar simulators can be calibrated with cylindrical
calorimeters, devices that approximate black body absorbers. Calorimeter accuracy is
crucial to solar simulator characterization and maintenance. To discover the worst-case
performance of a cylindrical calorimeter during flux measurement Monte Carlo ray tracing …
High-flux solar simulators consist of lamps that mimic concentrated sunlight from a field of heliostats or parabolic dish. These installations are used to test promising solar-thermal technologies for commercial potential. Solar simulators can be calibrated with cylindrical calorimeters, devices that approximate black body absorbers. Calorimeter accuracy is crucial to solar simulator characterization and maintenance. To discover the worst-case performance of a cylindrical calorimeter during flux measurement Monte Carlo ray tracing was coupled to finite volume simulations. Results indicated that the calorimeter can exhibit an observer effect that distorts the solar simulator flux profile. Furthermore, the proposed design was sensitive to changes in calorimeter optical properties, changes that can result from oxidation and/or photobleaching over time. Design fidelity and robustness were substantially improved through the use of a beveled (conical) calorimeter aperture.
opg.optica.org
以上显示的是最相近的搜索结果。 查看全部搜索结果