Research on enabling novice AR/VR developers has emphasized the need to lower the technical barriers to entry. This is often achieved by providing new authoring tools that provide simpler means to implement XR interactions through abstraction. However, novices are then bound by the ceiling of each tool and may not form the correct mental model of how interactions are implemented. We present XRSpotlight, a system that supports novices by curating a list of the XR interactions defined in a Unity scene and presenting them as rules in natural language. Our approach is based on a model abstraction that unifies existing XR toolkit implementations. Using our model, XRSpotlight can find incomplete specifications of interactions, suggest similar interactions, and copy-paste interactions from examples using different toolkits. We assess the validity of our model with professional VR developers and demonstrate that XRSpotlight helps novices understand how XR interactions are implemented in examples and apply this knowledge in their projects.