Driving with style: Inverse reinforcement learning in general-purpose planning for automated driving

S Rosbach, V James, S Großjohann… - 2019 IEEE/RSJ …, 2019 - ieeexplore.ieee.org
Behavior and motion planning play an important role in automated driving. Traditionally,
behavior planners instruct local motion planners with predefined behaviors. Due to the high …

Conditional predictive behavior planning with inverse reinforcement learning for human-like autonomous driving

Z Huang, H Liu, J Wu, C Lv - IEEE Transactions on Intelligent …, 2023 - ieeexplore.ieee.org
Making safe and human-like decisions is an essential capability of autonomous driving
systems, and learning-based behavior planning presents a promising pathway toward …

Pilot: Efficient planning by imitation learning and optimisation for safe autonomous driving

H Pulver, F Eiras, L Carozza, M Hawasly… - 2021 IEEE/RSJ …, 2021 - ieeexplore.ieee.org
Achieving a proper balance between planning quality, safety and efficiency is a major
challenge for autonomous driving. Optimisation-based motion planners are capable of …

Driveirl: Drive in real life with inverse reinforcement learning

T Phan-Minh, F Howington, TS Chu… - … on Robotics and …, 2023 - ieeexplore.ieee.org
In this paper, we introduce the first published planner to drive a car in dense, urban traffic
using Inverse Reinforcement Learning (IRL). Our planner, DriveIRL, generates a diverse set …

Rethinking imitation-based planners for autonomous driving

J Cheng, Y Chen, X Mei, B Yang, B Li… - 2024 IEEE International …, 2024 - ieeexplore.ieee.org
In recent years, imitation-based driving planners have reported considerable success.
However, due to the absence of a standardized benchmark, the effectiveness of various …

Driving in real life with inverse reinforcement learning

T Phan-Minh, F Howington, TS Chu, SU Lee… - arXiv preprint arXiv …, 2022 - arxiv.org
In this paper, we introduce the first learning-based planner to drive a car in dense, urban
traffic using Inverse Reinforcement Learning (IRL). Our planner, DriveIRL, generates a …

Jointly learnable behavior and trajectory planning for self-driving vehicles

A Sadat, M Ren, A Pokrovsky, YC Lin… - 2019 IEEE/RSJ …, 2019 - ieeexplore.ieee.org
The motion planners used in self-driving vehicles need to generate trajectories that are safe,
comfortable, and obey the traffic rules. This is usually achieved by two modules: behavior …

Dynamic input for deep reinforcement learning in autonomous driving

M Huegle, G Kalweit, B Mirchevska… - 2019 IEEE/RSJ …, 2019 - ieeexplore.ieee.org
In many real-world decision making problems, reaching an optimal decision requires taking
into account a variable number of objects around the agent. Autonomous driving is a domain …

Large-scale cost function learning for path planning using deep inverse reinforcement learning

M Wulfmeier, D Rao, DZ Wang… - … Journal of Robotics …, 2017 - journals.sagepub.com
We present an approach for learning spatial traversability maps for driving in complex, urban
environments based on an extensive dataset demonstrating the driving behaviour of human …

Vision-based trajectory planning via imitation learning for autonomous vehicles

P Cai, Y Sun, Y Chen, M Liu - 2019 IEEE Intelligent …, 2019 - ieeexplore.ieee.org
Reliable trajectory planning like human drivers in real-world dynamic urban environments is
a critical capability for autonomous driving. To this end, we develop a vision and imitation …