[PDF][PDF] Sparse probabilistic matrix factorization by laplace distribution for collaborative filtering

L Jing, P Wang, L Yang - Twenty-Fourth International Joint Conference on …, 2015 - ijcai.org
In recommendation systems, probabilistic matrix factorization (PMF) is a state-of-the-art
collaborative filtering method by determining the latent features to represent users and …

Leveraging tagging for neighborhood-aware probabilistic matrix factorization

L Wu, E Chen, Q Liu, L Xu, T Bao, L Zhang - Proceedings of the 21st …, 2012 - dl.acm.org
Collaborative Filtering (CF) is a popular way to build recommender systems and has been
successfully employed in many applications. Generally, two kinds of approaches to CF, the …

Matrix factorization meets cosine similarity: addressing sparsity problem in collaborative filtering recommender system

H Wen, G Ding, C Liu, J Wang - … and Applications: 16th Asia-Pacific Web …, 2014 - Springer
Matrix factorization (MF) technique has been widely used in collaborative filtering
recommendation systems. However, MF still suffers from data sparsity problem. Although …

Kernelized probabilistic matrix factorization for collaborative filtering: exploiting projected user and item graph

B Pal, M Jenamani - Proceedings of the 12th ACM conference on …, 2018 - dl.acm.org
Matrix Factorization (MF) techniques have already shown its strong foundation in
collaborative filtering (CF), particularly for rating prediction problem. In the basic MF model …

SCMF: sparse covariance matrix factorization for collaborative filtering

J Shi, N Wang, Y Xia, DY Yeung, I King… - Proceedings of the …, 2013 - repository.ust.hk
Matrix factorization (MF) is a popular collaborative filtering approach for recommender
systems due to its simplicity and effectiveness. Existing MF methods either assume that all …

Integrating user-side information into matrix factorization to address data sparsity of collaborative filtering

G Behera, N Nain, RK Soni - Multimedia Systems, 2024 - Springer
Recommendation techniques play a vital role in recommending an actual product to an
intended user. The recommendation also supports the user in the decision-making process …

Bayesian deep collaborative matrix factorization

T Xiao, S Liang, W Shen, Z Meng - Proceedings of the AAAI Conference on …, 2019 - aaai.org
In this paper, we propose a Bayesian Deep Collaborative Matrix Factorization (BDCMF)
algorithm for collaborative filtering (CF). BDCMF is a novel Bayesian deep generative model …

Localized matrix factorization for recommendation based on matrix block diagonal forms

Y Zhang, M Zhang, Y Liu, S Ma, S Feng - Proceedings of the 22nd …, 2013 - dl.acm.org
Matrix factorization on user-item rating matrices has achieved significant success in
collaborative filtering based recommendation tasks. However, it also encounters the …

Matrix factorization for recommendation with explicit and implicit feedback

S Chen, Y Peng - Knowledge-Based Systems, 2018 - Elsevier
Matrix factorization (MF) methods have proven as efficient and scalable approaches for
collaborative filtering problems. Numerous existing MF methods rely heavily on explicit …

Matrix factorization with rating completion: An enhanced SVD model for collaborative filtering recommender systems

X Guan, CT Li, Y Guan - IEEE access, 2017 - ieeexplore.ieee.org
Collaborative filtering algorithms, such as matrix factorization techniques, are recently
gaining momentum due to their promising performance on recommender systems. However …