A strong version of the Birkhoff--James orthogonality in Hilbert -modules

L Arambšić, R Rajić - Annals of functional analysis, 2014 - projecteuclid.org
In this paper we introduce a strong version of the Birkhoff--James orthogonality in Hilbert $
C^* $-modules. More precisely, we consider elements $ x $ and $ y $ of a Hilbert $ C …

On symmetry of the (strong) Birkhoff–James orthogonality in Hilbert -modules

L Arambašić, R Rajić - 2016 - projecteuclid.org
On symmetry of the (strong) Birkhoff–James orthogonality in Hilbert C*-modules Page 1 Ann.
Funct. Anal. 7 (2016), no. 1, 17–23 http://dx.doi.org/10.1215/20088752-3158195 ISSN: 2008-8752 …

On Birkhoff–James and Roberts orthogonality

L Arambašic, R Rajic - Special Matrices, 2018 - degruyter.com
On Birkho –James and Roberts orthogonality Page 1 Open Access. © 2018 Ljiljana
Arambašić and Rajna Rajić, published by De Gruyter. This work is licensed under the …

On three concepts of orthogonality in Hilbert C*-modules

L Arambašić, R Rajić - Linear and multilinear algebra, 2015 - Taylor & Francis
In this paper, we consider three concepts of orthogonality in a Hilbert-module over a-
algebra: the Birkhoff–James orthogonality, the strong Birk–James orthogonality and the …

The Birkhoff–James orthogonality in Hilbert C∗-modules

L Arambašić, R Rajić - Linear algebra and its applications, 2012 - Elsevier
In this paper we characterize the Birkhoff–James orthogonality for elements of a Hilbert C∗-
module in terms of states of the underlying C∗-algebra. We also show that the Birkhoff …

Operator equalities and characterizations of orthogonality in pre-Hilbert C*-modules

R Eskandari, MS Moslehian… - Proceedings of the …, 2021 - cambridge.org
In the first part of the paper, we use states on $ C^{*} $-algebras in order to establish some
equivalent statements to equality in the triangle inequality, as well as to the parallelogram …

[HTML][HTML] The Friedrichs angle and alternating projections in Hilbert C⁎-modules

B Mesland, A Rennie - Journal of Mathematical Analysis and Applications, 2022 - Elsevier
Let B be a C⁎-algebra, X a Hilbert C⁎-module over B and M, N⊂ X a pair of complemented
submodules. We prove the C⁎-module version of von Neumann's alternating projections …

From norm derivatives to orthogonalities in Hilbert C*-modules

P Wójcik, A Zamani - Linear and Multilinear Algebra, 2023 - Taylor & Francis
Let (X,⟨⋅,⋅⟩) be a Hilbert C∗-module over a C∗-algebra A and let S (A) be the set of states
on A. In this paper, we first compute the norm derivative for nonzero elements x and y of X as …

Hilbert -Modules with Hilbert Dual and -Fredholm Operators

V Manuilov, E Troitsky - Integral Equations and Operator Theory, 2023 - Springer
Abstract We study Hilbert C∗-modules over a C∗-algebra A for which the Banach A-dual
module carries a natural structure of Hilbert A-module. In this direction we prove that if A is …

[HTML][HTML] Characterization of Birkhoff–James orthogonality

T Bhattacharyya, P Grover - Journal of Mathematical Analysis and …, 2013 - Elsevier
The Birkhoff–James orthogonality is a generalization of Hilbert space orthogonality to
Banach spaces. We investigate this notion of orthogonality when the Banach space has …