Adversarial training for graph neural networks: Pitfalls, solutions, and new directions

L Gosch, S Geisler, D Sturm… - Advances in …, 2024 - proceedings.neurips.cc
Despite its success in the image domain, adversarial training did not (yet) stand out as an
effective defense for Graph Neural Networks (GNNs) against graph structure perturbations …

Gnnguard: Defending graph neural networks against adversarial attacks

X Zhang, M Zitnik - Advances in neural information …, 2020 - proceedings.neurips.cc
Deep learning methods for graphs achieve remarkable performance on many tasks.
However, despite the proliferation of such methods and their success, recent findings …

Are defenses for graph neural networks robust?

F Mujkanovic, S Geisler… - Advances in Neural …, 2022 - proceedings.neurips.cc
A cursory reading of the literature suggests that we have made a lot of progress in designing
effective adversarial defenses for Graph Neural Networks (GNNs). Yet, the standard …

Graph structure learning for robust graph neural networks

W Jin, Y Ma, X Liu, X Tang, S Wang… - Proceedings of the 26th …, 2020 - dl.acm.org
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs.
However, recent studies show that GNNs are vulnerable to carefully-crafted perturbations …

[PDF][PDF] Latent adversarial training of graph convolution networks

H Jin, X Zhang - ICML workshop on learning and reasoning with graph …, 2019 - cs.uic.edu
Despite the recent success of graph convolution networks (GCNs) in modeling graph
structured data, its vulnerability to adversarial attacks have been revealed and attacks on …

Black-box adversarial attack and defense on graph neural networks

H Li, S Di, Z Li, L Chen, J Cao - 2022 IEEE 38th International …, 2022 - ieeexplore.ieee.org
Graph neural networks (GNNs) have achieved great success on various graph tasks.
However, recent studies have re-vealed that GNNs are vulnerable to adversarial attacks …

Spectral adversarial training for robust graph neural network

J Li, J Peng, L Chen, Z Zheng, T Liang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Recent studies demonstrate that Graph Neural Networks (GNNs) are vulnerable to slight but
adversarially designed perturbations, known as adversarial examples. To address this …

Graph adversarial attack via rewiring

Y Ma, S Wang, T Derr, L Wu, J Tang - Proceedings of the 27th ACM …, 2021 - dl.acm.org
Graph Neural Networks (GNNs) have demonstrated their powerful capability in learning
representations for graph-structured data. Consequently, they have enhanced the …

Adversarial attacks on graph neural networks: Perturbations and their patterns

D Zügner, O Borchert, A Akbarnejad… - ACM Transactions on …, 2020 - dl.acm.org
Deep learning models for graphs have achieved strong performance for the task of node
classification. Despite their proliferation, little is known about their robustness to adversarial …

Robust graph convolutional networks against adversarial attacks

D Zhu, Z Zhang, P Cui, W Zhu - Proceedings of the 25th ACM SIGKDD …, 2019 - dl.acm.org
Graph Convolutional Networks (GCNs) are an emerging type of neural network model on
graphs which have achieved state-of-the-art performance in the task of node classification …