Weyl's theorems for some classes of operators

P Aiena, F Villafane - Integral Equations and Operator Theory, 2005 - Springer
We introduce the class of operators on Banach spaces having property (H) and study Weyl's
theorems, and related results for operators which satisfy this property. We show that a-Weyl's …

Weyl's theorem, a-Weyl's theorem and single-valued extension property.

P Aiena, C Carpintero - Extracta Mathematicae, 2005 - eudml.org
Abstract top In this paper we investigate the relation of Weyl's theorem, of a-Weyl's theorem
and the single valued extension property. In particular, we establish necessary and sufficient …

[PDF][PDF] Weyl's theorem, tensor products and multiplication operators

R Harte, AH Kim - Journal of mathematical analysis and applications, 2007 - academia.edu
Weyl’s theorem, tensor products and multiplication operators Page 1 J. Math. Anal. Appl. 336
(2007) 1124–1131 www.elsevier.com/locate/jmaa Weyl’s theorem, tensor products and …

Decomposable systems of operators in harmonic analysis

E Albrecht - Toeplitz Centennial: Toeplitz Memorial Conference in …, 1982 - Springer
Abstract Recently (see [2]), we introduced the notion of decomposability for arbitrary (not
necessarily finite) systems of commuting bounded linear operators on a Banach space and …

On algebras which are inductive limits of Banach spaces

D Alpay, G Salomon - Integral Equations and Operator Theory, 2015 - Springer
We introduce algebras which are inductive limits of Banach spaces and carry inequalities
which are counterparts of the inequality for the norm in a Banach algebra, and show that the …

Semigroup of operators on dual Banach spaces

ATM Lau - Proceedings of the American Mathematical Society, 1976 - ams.org
In this paper, we give a short and simple proof to a more general version of a recent result of
Yeadon for semigroups of weak $^{\ast} $-continuous operators on a dual Banach space …

The operator amenability of A (G)

ZJ Ruan - American Journal of Mathematics, 1995 - JSTOR
1. Introduction. The theory of amenable Banach algebras was first intro-duced by B. Johnson
[20]. We recall that a Banach algebra A is amenable if for every Banach A-bimodule V, every …

Bounded and completely bounded local derivations from certain commutative semisimple Banach algebras

E Samei - Proceedings of the American Mathematical Society, 2005 - ams.org
We show that for a locally compact group $ G $, every completely bounded local derivation
from the Fourier algebra $ A (G) $ into a symmetric operator $ A (G) $-module or the …

Cohomology and the operator space structure of the Fourier algebra and its second dual

B Forrest, P Wood - Indiana University mathematics journal, 2001 - JSTOR
Let G be a locally compact group. We introduce the notion of operator weak amenability for a
completely contractive Banach algebra. We then study the potential operator weak …

Beurling–Fourier algebras, operator amenability and Arens regularity

HH Lee, E Samei - Journal of Functional Analysis, 2012 - Elsevier
We introduce the class of Beurling–Fourier algebras on locally compact groups and show
that they are non-commutative analogs of classical Beurling algebras. We obtain various …