Estimates for eigenvalues of Laplacian operator with any order

F Wu, L Cao - Science China Mathematics, 2007 - infona.pl
Let D be a bounded domain in an n-dimensional Euclidean space ℝ n. Assume that $
$0<\lambda _1\leqslant\lambda _2\leqslant\cdots\leqslant\lambda _k\leqslant\cdots $$ are …

Inequalities for eigenvalues of Laplacian with any order

QM Cheng, T Ichikawa, S Mametsuka - Communications in …, 2009 - World Scientific
In this paper, we study eigenvalues of Laplacian with any order on a bounded domain in an
n-dimensional Euclidean space and obtain estimates for eigenvalues, which are the Yang …

Bounds on eigenvalues of Dirichlet Laplacian

QM Cheng, H Yang - Mathematische Annalen, 2007 - Springer
In this paper, we investigate an eigenvalue problem of Dirichlet Laplacian on a bounded
domain Ω in an n-dimensional Euclidean space R n. If λ k+ 1 is the (k+ 1) th eigenvalue of …

Estimates of the gaps between consecutive eigenvalues of Laplacian

D Chen, T Zheng, H Yang - Pacific Journal of Mathematics, 2016 - msp.org
For the eigenvalue problem of the Dirichlet Laplacian on a bounded domain in Euclidean
space ℝ n, we obtain estimates for the upper bounds of the gaps between consecutive …

[PDF][PDF] Universal bounds for eigenvalues of Laplacian operator of any order

H Guangyue, C Wenyi - Acta Mathematica Scientia, 2010 - manu45.magtech.com.cn
UNIVERSAL BOUNDS FOR EIGENVALUES OF LAPLACIAN OPERATOR OF ANY ORDER
Page 1 Acta Mathematica Scientia 2010,30B(3):939–948 http://actams.wipm.ac.cn UNIVERSAL …

A lower bound for eigenvalues of the poly-Laplacian with arbitrary order

QM Cheng, X Qi, G Wei - Pacific Journal of Mathematics, 2013 - msp.org
A lower bound for eigenvalues of the poly-Laplacian with arbitrary order Page 1 Pacific Journal of
Mathematics A LOWER BOUND FOR EIGENVALUES OF THE POLY-LAPLACIAN WITH …

Estimates for sums of eigenvalues of the Laplacian

P Kroger - Journal of Functional Analysis, 1994 - Elsevier
The aim of this paper is to give bounds for the eigenvalues of the Laplacian on a domain in
Euclidean space and on a compact Riemannian manifold. First, we consider the eigenvalue …

Eigenvalue estimates for quadratic polynomial operator of the Laplacian

S Hejun, Q Xuerong - Glasgow Mathematical Journal, 2011 - cambridge.org
For a bounded domain Ω in a complete Riemannian manifold M, we investigate the Dirichlet
weighted eigenvalue problem of quadratic polynomial operator Δ2− aΔ+ b of the Laplacian …

Lower bounds for Orlicz eigenvalues

AM Salort - arXiv preprint arXiv:2104.07562, 2021 - arxiv.org
In this article we consider the following weighted nonlinear eigenvalue problem for the $ g-$
Laplacian $$-\mathop {\text {div}}\left (g (|\nabla u|)\frac {\nabla u}{|\nabla u|}\right)=\lambda …

Estimates for eigenvalues of the poly-Laplacian with any order in a unit sphere

QM Cheng, T Ichikawa, S Mametsuka - Calculus of Variations and Partial …, 2009 - Springer
In this paper we study eigenvalues of the poly-Laplacian with any order on a domain in an n-
dimensional unit sphere and obtain estimates for eigenvalues. In particular, the optimal …