Deep inverse reinforcement learning for behavior prediction in autonomous driving: Accurate forecasts of vehicle motion

T Fernando, S Denman, S Sridharan… - IEEE Signal …, 2020 - ieeexplore.ieee.org
Accurate behavior anticipation is essential for autonomous vehicles when navigating in
close proximity to other vehicles, pedestrians, and cyclists. Thanks to the recent advances in …

Integrating kinematics and environment context into deep inverse reinforcement learning for predicting off-road vehicle trajectories

Y Zhang, W Wang, R Bonatti, D Maturana… - arXiv preprint arXiv …, 2018 - arxiv.org
Predicting the motion of a mobile agent from a third-person perspective is an important
component for many robotics applications, such as autonomous navigation and tracking …

Driving in real life with inverse reinforcement learning

T Phan-Minh, F Howington, TS Chu, SU Lee… - arXiv preprint arXiv …, 2022 - arxiv.org
In this paper, we introduce the first learning-based planner to drive a car in dense, urban
traffic using Inverse Reinforcement Learning (IRL). Our planner, DriveIRL, generates a …

Deep reinforcement learning for autonomous driving: A survey

BR Kiran, I Sobh, V Talpaert, P Mannion… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
With the development of deep representation learning, the domain of reinforcement learning
(RL) has become a powerful learning framework now capable of learning complex policies …

Driveirl: Drive in real life with inverse reinforcement learning

T Phan-Minh, F Howington, TS Chu… - … on Robotics and …, 2023 - ieeexplore.ieee.org
In this paper, we introduce the first published planner to drive a car in dense, urban traffic
using Inverse Reinforcement Learning (IRL). Our planner, DriveIRL, generates a diverse set …

A survey of deep rl and il for autonomous driving policy learning

Z Zhu, H Zhao - IEEE Transactions on Intelligent Transportation …, 2021 - ieeexplore.ieee.org
Autonomous driving (AD) agents generate driving policies based on online perception
results, which are obtained at multiple levels of abstraction, eg, behavior planning, motion …

Conditional predictive behavior planning with inverse reinforcement learning for human-like autonomous driving

Z Huang, H Liu, J Wu, C Lv - IEEE Transactions on Intelligent …, 2023 - ieeexplore.ieee.org
Making safe and human-like decisions is an essential capability of autonomous driving
systems, and learning-based behavior planning presents a promising pathway toward …

Learning the Car‐following Behavior of Drivers Using Maximum Entropy Deep Inverse Reinforcement Learning

Y Zhou, R Fu, C Wang - Journal of advanced transportation, 2020 - Wiley Online Library
The present study proposes a framework for learning the car‐following behavior of drivers
based on maximum entropy deep inverse reinforcement learning. The proposed framework …

Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning

K Lee, D Isele, EA Theodorou… - IEEE Robotics and …, 2022 - ieeexplore.ieee.org
It can be difficult to autonomously produce driver behavior so that it appears natural to other
traffic participants. Through Inverse Reinforcement Learning (IRL), we can automate this …

Efficient deep reinforcement learning with imitative expert priors for autonomous driving

Z Huang, J Wu, C Lv - IEEE Transactions on Neural Networks …, 2022 - ieeexplore.ieee.org
Deep reinforcement learning (DRL) is a promising way to achieve human-like autonomous
driving. However, the low sample efficiency and difficulty of designing reward functions for …