Cruparamer: Learning on parameter-augmented api sequences for malware detection

X Chen, Z Hao, L Li, L Cui, Y Zhu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Learning on execution behaviour, ie, sequences of API calls, is proven to be effective in
malware detection. In this paper, we present CruParamer, a deep neural network based …

A novel deep framework for dynamic malware detection based on API sequence intrinsic features

C Li, Q Lv, N Li, Y Wang, D Sun, Y Qiao - Computers & Security, 2022 - Elsevier
Dynamic malware detection executes the software in a secured virtual environment and
monitors its run-time behavior. This technique widely uses API sequence analysis to identify …

Api2vec: Learning representations of api sequences for malware detection

L Cui, J Cui, Y Ji, Z Hao, L Li, Z Ding - Proceedings of the 32nd ACM …, 2023 - dl.acm.org
Analyzing malware based on API call sequence is an effective approach as the sequence
reflects the dynamic execution behavior of malware. Recent advancements in deep learning …

ASSCA: API sequence and statistics features combined architecture for malware detection

L Xiaofeng, J Fangshuo, Z Xiao, Y Shengwei, S Jing… - Computer Networks, 2019 - Elsevier
In this paper, a new deep learning and machine learning combined model is proposed for
malware behavior analysis. One part of it analyzes the dependency relation in API …

DMalNet: Dynamic malware analysis based on API feature engineering and graph learning

C Li, Z Cheng, H Zhu, L Wang, Q Lv, Y Wang, N Li… - Computers & …, 2022 - Elsevier
Abstract Application Programming Interfaces (APIs) are widely considered a useful data
source for dynamic malware analysis to understand the behavioral characteristics of …

Advanced windows methods on malware detection and classification

D Rabadi, SG Teo - Proceedings of the 36th Annual Computer Security …, 2020 - dl.acm.org
Application Programming Interfaces (APIs) are still considered the standard accessible data
source and core wok of the most widely adopted malware detection and classification …

Ntmaldetect: A machine learning approach to malware detection using native api system calls

CW Kim - arXiv preprint arXiv:1802.05412, 2018 - arxiv.org
As computing systems become increasingly advanced and as users increasingly engage
themselves in technology, security has never been a greater concern. In malware detection …

[HTML][HTML] MalDAE: Detecting and explaining malware based on correlation and fusion of static and dynamic characteristics

W Han, J Xue, Y Wang, L Huang, Z Kong, L Mao - computers & security, 2019 - Elsevier
It is a wide-spread way to detect malware by analyzing its behavioral characteristics based
on API call sequences. However, previous studies usually just focus on its static or dynamic …

CTIMD: cyber threat intelligence enhanced malware detection using API call sequences with parameters

T Chen, H Zeng, M Lv, T Zhu - Computers & Security, 2024 - Elsevier
Dynamic malware analysis that monitors the sequences of API calls of the program in a
sandbox has been proven to be effective against code obfuscation and unknown malware …

MAAR: Robust features to detect malicious activity based on API calls, their arguments and return values

Z Salehi, A Sami, M Ghiasi - Engineering Applications of Artificial …, 2017 - Elsevier
Basically malware detection techniques are either: static analysis or dynamic analysis. Static
analysis explores malware code without executing it while dynamic analysis relies on run …