Let θ=(θ0, θ1) be a fixed vector in R2 with strictly positive components and suppose σ0, σ1> 0. Set σθ= θ0σ0+ θ1σ1 and, if x0, x1∈ Rn, set xθ= θ0x0+ θ1x1. Moreover, for any j∈{0, 1 …
C BORELL - Potential Analysis, 2000 - stat.washington.edu
Let θ=(θ0, θ1) be a fixed vector in R2 with strictly positive components and suppose σ0, σ1> 0. Set σθ= θ0σ0+ θ1σ1 and, if x0, x1∈ Rn, set xθ= θ0x0+ θ1x1. Moreover, for any j∈{0, 1 …
Let θ=(θ0, θ1) be a fixed vector in R 2 with strictly positive components and suppose σ0, σ1> 0. Set σθ= θ0 σ0+ θ1 σ1 and, if x 0, x 1∈ R n, set x θ= θ0 x 0+ θ1 x 1. Moreover, for any …
Let θ=(θ 0, θ 1) be a fixed vector in R 2 with strictly positive components and suppose σ 0, σ 1> 0. Set σ θ= θ 0 σ 0+ θ 1 σ 1 and, if x 0, x 1∈ R n, set x θ= θ 0 x 0+ θ 1 x 1. Moreover, for …
C BORELL - Potential Analysis, 2000 - sites.stat.washington.edu
Let θ=(θ0, θ1) be a fixed vector in R2 with strictly positive components and suppose σ0, σ1> 0. Set σθ= θ0σ0+ θ1σ1 and, if x0, x1∈ Rn, set xθ= θ0x0+ θ1x1. Moreover, for any j∈{0, 1 …
Let=(0; 1) be a xed vector in R2 with strictly positive components and suppose 0; 1> 0: Set= 0 0+ 1 1 and, if x0; x1 2Rn; set x= 0x0+ 1x1: Moreover, for any j 2f0; 1; g; let cj: Rn! R be a …
[引用][C]Diffusion Equations and Geometric Inequalities