Stable pair invariants of surfaces and Seiberg–Witten invariants

M Kool - The Quarterly Journal of Mathematics, 2016 - academic.oup.com
The moduli space of stable pairs on a local surface is in general non-compact. The action of
on the fibres of induces an action on the moduli space and the stable pair invariants of are …

[引用][C] Stable pair invariants of surfaces and Seiberg-Witten invariants

M Kool - Quart. J. Math. Oxford Ser., 2016 - inspirehep.net
The moduli space of stable pairs on a local surface $ X= K_S $ is in general non-compact.
The action of ${\mathbb {C}}^{\ast} $ on the fibres of $ X $ induces an action on the moduli …

Stable pair invariants of surfaces and Seiberg-Witten invariants

M Kool - arXiv preprint arXiv:1303.5340, 2013 - arxiv.org
The moduli space of stable pairs on a local surface $ X= K_S $ is in general non-compact.
The action of $\mathbb {C}^* $ on the fibres of $ X $ induces an action on the moduli space …

STABLE PAIR INVARIANTS OF SURFACES AND SEIBERG–WITTENINVARIANTS

M Kool - Quarterly Journal of Mathematics, 2016 - ieeexplore.ieee.org
The moduli space of stable pairs on a local surface X=K_S is in generalnon-compact. The
action of C^∗ on thefibres of X induces an action on the moduli space and the stable …

STABLE PAIR INVARIANTS OF SURFACES AND SEIBERG-WITTEN INVARIANTS.

M KOOL - Quarterly Journal of Mathematics, 2016 - search.ebscohost.com
The moduli space of stable pairs on a local surface X= KS is in general non-compact. The
action of ℂ* on the fibres of X induces an action on the moduli space and the stable pair …

[引用][C] STABLE PAIR INVARIANTS OF SURFACES AND SEIBERG–WITTEN INVARIANTS

M Kool - The Quarterly Journal of Mathematics, 2016 - cir.nii.ac.jp
STABLE PAIR INVARIANTS OF SURFACES AND SEIBERG–WITTEN INVARIANTS | CiNii
Research CiNii 国立情報学研究所 学術情報ナビゲータ[サイニィ] 詳細へ移動 検索フォームへ移動 …

Stable pair invariants of surfaces and Seiberg-Witten invariants

M Kool - arXiv e-prints, 2013 - ui.adsabs.harvard.edu
The moduli space of stable pairs on a local surface $ X= K_S $ is in general non-compact.
The action of $\mathbb {C}^* $ on the fibres of $ X $ induces an action on the moduli space …