The global attractivity of the rational difference equation 𝑦_ {𝑛}= 𝐴+(\frac {𝑦_ {𝑛-𝑘}} 𝑦_ {𝑛-𝑚})^{𝑝}

K Berenhaut, J Foley, S Stević - Proceedings of the American Mathematical …, 2008 - ams.org
This paper studies the behavior of positive solutions of the recursive equation\begin
{eqnarray} y_n= A+\left (\frac {y_ {nk}}{y_ {nm}}\right)^ p,\quad n= 0, 1, 2,\ldots,\nonumber …

[引用][C] THE GLOBAL ATTRACTIVITY OF THE RATIONAL DIFFERENCE EQUATION yn= A+ (yn-k/yn-m) p

KS BERENHAUT, JD FOLEY… - Proceedings of the …, 2008 - pascal-francis.inist.fr
THE GLOBAL ATTRACTIVITY OF THE RATIONAL DIFFERENCE EQUATION yn = A+ (yn-k/yn-m)p
CNRS Inist Pascal-Francis CNRS Pascal and Francis Bibliographic Databases Simple …

[PDF][PDF] THE GLOBAL ATTRACTIVITY OF THE RATIONAL DIFFERENCE EQUATION yn= A

KS BERENHAUT, JD FOLEY… - AMERICAN …, 2008 - scholar.archive.org
THE GLOBAL ATTRACTIVITY OF THE RATIONAL DIFFERENCE EQUATION yn = A + ( )p 1.
Introduction This paper studies the behavior of pos Page 1 PROCEEDINGS OF THE …

[PDF][PDF] THE GLOBAL ATTRACTIVITY OF THE RATIONAL DIFFERENCE EQUATION yn= A

KS BERENHAUT, JD FOLEY, S STEVIC - AMERICAN MATHEMATICAL …, 2008 - Citeseer
THE GLOBAL ATTRACTIVITY OF THE RATIONAL DIFFERENCE EQUATION yn = A + ( )p 1.
Introduction This paper studies the behavior of pos Page 1 PROCEEDINGS OF THE …

The Global Attractivity of the Rational Difference Equation

KS Berenhaut, JD Foley, S Stević - Proceedings of the American …, 2008 - JSTOR
This paper studies the behavior of positive solutions of the recursive equation
y_n=A+\left(y_nky_nm\right)^p, n= 0, 1, 2,..., with y_-s,y_-s+1,...,y_-1∈(0,∞) and k, m∈ 1, 2 …

[PDF][PDF] THE GLOBAL ATTRACTIVITY OF THE RATIONAL DIFFERENCE EQUATION yn= A

KS BERENHAUT, JD FOLEY… - AMERICAN …, 2008 - researchgate.net
THE GLOBAL ATTRACTIVITY OF THE RATIONAL DIFFERENCE EQUATION yn = A + ( )p 1.
Introduction This paper studies the behavior of pos Page 1 PROCEEDINGS OF THE …

[引用][C] The global attractivity of the rational difference equation yn= A+(yn-k/yn-m) p

K Berenhaut, D John, S Stević - … of the American …, 2008 - American Mathematical Society