Irreducible generalized numerical semigroups and uniqueness of the Frobenius element

C Cisto, G Failla, C Peterson, R Utano - Semigroup Forum, 2019 - Springer
Let N^ d N d be the d-dimensional monoid of non-negative integers. A generalized
numerical semigroup is a submonoid S ⊆ N^ d S⊆ N d such that H (S)= N^ d \ SH (S)= N …

Irreducible generalized numerical semigroups and uniqueness of the Frobenius element.

C Cisto, G Failla, C Peterson, R Utano - Semigroup Forum, 2019 - search.ebscohost.com
Let N d be the d-dimensional monoid of non-negative integers. A generalized numerical
semigroup is a submonoid S⊆ N d such that H (S)= N d\S is a finite set. We introduce …

Irreducible generalized numerical semigroups and uniqueness of the Frobenius element

C Cisto, G Failla, C Peterson, R Utano - SEMIGROUP FORUM, 2019 - iris.unime.it
Let N^ d be the d-dimensional monoid of non-negative integers. A generalized numerical
semigroup is a submonoid S⊆ N^ d such that H (S)= N^ d S is a finite set. We introduce …

Irreducible Generalized Numerical Semigroups and uniqueness of the Frobenius element

C Cisto, G Failla, C Peterson, R Utano - arXiv preprint arXiv:1907.07955, 2019 - arxiv.org
Let $\mathbb {N}^{d} $ be the $ d $-dimensional monoid of non-negative integers. A
generalized numerical semigroup is a submonoid $ S\subseteq\mathbb {N}^ d $ such that …

Irreducible Generalized Numerical Semigroups and uniqueness of the Frobenius element

C Cisto, G Failla, C Peterson, R Utano - arXiv e-prints, 2019 - ui.adsabs.harvard.edu
Abstract Let $\mathbb {N}^{d} $ be the $ d $-dimensional monoid of non-negative integers. A
generalized numerical semigroup is a submonoid $ S\subseteq\mathbb {N}^ d $ such that …