Existence of an upper critical dimension in the majority voter model

JS Yang, I Kim, W Kwak - Physical Review E—Statistical, Nonlinear, and Soft …, 2008 - APS
We study the critical properties of the majority voter model on d-dimensional hypercubic
lattices. In two dimensions, the majority voter model belongs to the same universality class …

[PDF][PDF] Existence of an upper critical dimension in the majority voter model

W Kwak - PHYSICAL REVIEW E Phys Rev E, 2008 - researchgate.net
The opinion dynamics based on a stochastic spin model using physical notions is one of the
active fields in interdisciplinary research 1–6. The majority voter model is one of the widely …

Existence of an upper critical dimension in the majority voter model

JS Yang, IM Kim, WS Kwak - PHYSICAL REVIEW E, 2008 - koasas.kaist.ac.kr
We study the critical properties of the majority voter model on d-dimensional hypercubic
lattices. In two dimensions, the majority voter model belongs to the same universality class …

Existence of an upper critical dimension in the majority voter model

JS Yang, I Kim, W Kwak - PHYSICAL REVIEW E, 2008 - scholar.korea.ac.kr
We study the critical properties of the majority voter model on d-dimensional hypercubic
lattices. In two dimensions, the majority voter model belongs to the same universality class …

Existence of an upper critical dimension in the majority voter model.

JS Yang, IM Kim, W Kwak - … review. E, Statistical, Nonlinear, and Soft …, 2008 - europepmc.org
We study the critical properties of the majority voter model on d-dimensional hypercubic
lattices. In two dimensions, the majority voter model belongs to the same universality class …

[引用][C] Existence of an upper critical dimension in the majority voter model

JS Yang, I Kim, W Kwak - Physical Review E, 2008 - cir.nii.ac.jp
Existence of an upper critical dimension in the majority voter model | CiNii Research CiNii 国立
情報学研究所 学術情報ナビゲータ[サイニィ] 詳細へ移動 検索フォームへ移動 論文・データをさがす …

Existence of an upper critical dimension in the majority voter model

JS Yang, IM Kim, W Kwak - Physical review. E, Statistical …, 2008 - pubmed.ncbi.nlm.nih.gov
We study the critical properties of the majority voter model on d-dimensional hypercubic
lattices. In two dimensions, the majority voter model belongs to the same universality class …

Existence of an upper critical dimension in the majority voter model

JS Yang, IM Kim, W Kwak - Physical Review E, 2008 - ui.adsabs.harvard.edu
We study the critical properties of the majority voter model on d-dimensional hypercubic
lattices. In two dimensions, the majority voter model belongs to the same universality class …