Two polymorphs of the new cluster compound [Ru2Bi14Br4](AlCl4)4 have been synthesized from Bi24Ru3Br20 in the Lewis acidic ionic liquid [BMIM]Cl/AlCl3 ([BMIM]+: 1‐n‐butyl‐3‐methylimidazolium) at 140 °C. A large fragment of the precursor’s structure, namely the [(Bi8)Ru(Bi4Br4)Ru(Bi5)]5+ cluster, dissolved as a whole and transformed into a closely related symmetrical [(Bi5)Ru(Bi4Br4)Ru(Bi5)]4+ cluster through structural conversion of a coordinating Bi82+ to a Bi5+ polycation, while the remainder was left intact. Both modifications have monoclinic unit cells that comprise two formula units (α form: P21/n, a=982.8(2), b=1793.2(4), c=1472.0(3) pm, β=109.05(3)°; β form: P21/n, a=1163.8(2), b=1442.7(3), c=1500.7(3), β=97.73(3)°). The [Ru2Bi14Br4]4+ cluster can be regarded as a binuclear inorganic complex of two ruthenium(I) cations that are coordinated by terminal Bi5+ square pyramids and a central Bi4Br4 ring. The presence of a covalent RuRu bond was established by molecular quantum chemical calculations utilizing real‐space bonding indicator ELI‐D. Structural similarity of the new and parent cluster suggests a structural reorganization or an exchange of the bismuth polycations as mechanisms of cluster formation. In this top‐down approach a complex‐structured unit formed at high temperature was made available for low‐temperature use.