We describe observations of 9.7 μm silicate features in 97 AGNs, exhibiting a wide range of AGN types and of X-ray extinction toward the central nuclei. We find that the strength of the silicate feature correlates with the HI column density estimated from fitting the X-ray data, such that low HI columns correspond to silicate emission, while high columns correspond to silicate absorption. The behavior is generally consistent with unification models in which the large diversity in AGN properties is caused by viewing-angle-dependent obscuration of the nucleus. Radio-loud AGNs and radio-quiet quasars follow roughly the correlation between HI columns and the strength of the silicate feature defined by Seyfert galaxies. The agreement among AGN types suggests a high-level unification with similar characteristics for the structure of the obscuring material. We demonstrate the implications for unification models qualitatively with a conceptual disk model. The model includes an inner accretion disk (< 0.1 pc in radius), a middle disk (0.1-10 pc in radius) with a dense diffuse component and with embedded denser clouds, and an outer clumpy disk (10-300 pc in radius).