A comparative study of the coulomb's and franklin's laws inspired algorithm (cfa) with modern evolutionary algorithms for numerical optimization

M Ghasemi, M Zare, A Zahedi, R Hemmati… - … Intelligence on Web and …, 2022 - Springer
International Conference on Pervasive Knowledge and Collective Intelligence on …, 2022Springer
Coulomb and Franklin's electricity laws are used in this paper to model an efficient
optimization algorithm based on electric particle searches, which has been named CFA. For
the CFA optimizer, the influence of electrically charged particles on each other in charged
things has been predicated on the forces of attraction and repulsion. Evolutionary algorithms
(EA) such as hybrid real coded genetic algorithm (RCGA) which combines the global and
local search (GL-25), differential evolution (DE) with strategy adaptation (SaDE), composite …
Abstract
Coulomb and Franklin’s electricity laws are used in this paper to model an efficient optimization algorithm based on electric particle searches, which has been named CFA. For the CFA optimizer, the influence of electrically charged particles on each other in charged things has been predicated on the forces of attraction and repulsion. Evolutionary algorithms (EA) such as hybrid real coded genetic algorithm (RCGA) which combines the global and local search (GL-25), differential evolution (DE) with strategy adaptation (SaDE), composite DE (CoDE), the improved standard particle swarm optimization 2011 (SPSO2013) and the grouped comprehensive learning PSO (GCLPSO) are compared to the CFA optimizer for finding global solutions of seven basic benchmark functions of high dimension D = 50. (GCLPSO). Experiments have shown that the suggested CFA optimizer is quite effective and competitive for the benchmark functions. Note that the source code of the CFA algorithm is publicly available at https://www.optim-app.com/projects/cfa, https://www.mathworks.com/matlabcentral/fileexchange/127727-franklin-s-laws-inspired-algorithm-cfa.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果