This paper studies the dynamics of interacting Tilapia fish and Pelican bird population in the Salton Sea. We assume that the diseases spread in Tilapia fish follows the Holling type II response function, and the interaction between Tilapia and Pelican follows the Beddington–DeAngelis response function. The dynamics of diffusive and delayed system are discussed separately. Analytically, all the feasible equilibria and their stability are discussed. The criterion for Turing instability is derived. Based on the normal form theory and center manifold arguments, the existence of stability criterion and the direction of Hopf bifurcation are obtained. Numerical simulation shows the occurrence Hopf bifurcation, double Hopf bifurcation and transcritical bifurcation scenarios. The snap shot shows the spot, spot-strip mix patterns in the whole domain. Further, the stability switching phenomena is observed in the delayed system. Our comprehensive study highlights the effect of different parameters, multiple time delay and extinction in Pelican populations.