A meshless finite point method for three‐dimensional analysis of compressible flow problems involving moving boundaries and adaptivity

E Ortega, E Oñate, S Idelsohn… - International Journal for …, 2013 - Wiley Online Library
International Journal for Numerical Methods in Fluids, 2013Wiley Online Library
SUMMARY A finite point method for solving compressible flow problems involving moving
boundaries and adaptivity is presented. The numerical methodology is based on an upwind‐
biased discretization of the Euler equations, written in arbitrary Lagrangian–Eulerian form
and integrated in time by means of a dual‐time steeping technique. In order to exploit the
meshless potential of the method, a domain deformation approach based on the spring
network analogy is implemented, and h‐adaptivity is also employed in the computations …
Summary
A finite point method for solving compressible flow problems involving moving boundaries and adaptivity is presented. The numerical methodology is based on an upwind‐biased discretization of the Euler equations, written in arbitrary Lagrangian–Eulerian form and integrated in time by means of a dual‐time steeping technique. In order to exploit the meshless potential of the method, a domain deformation approach based on the spring network analogy is implemented, and h‐adaptivity is also employed in the computations. Typical movable boundary problems in transonic flow regime are solved to assess the performance of the proposed technique. In addition, an application to a fluid–structure interaction problem involving static aeroelasticity illustrates the capability of the method to deal with practical engineering analyses. The computational cost and multi‐core performance of the proposed technique is also discussed through the examples provided. Copyright © 2013 John Wiley & Sons, Ltd.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果