A model‐based solution for observational errors in laboratory studies

BM Brost, BA Mosher… - Molecular ecology …, 2018 - Wiley Online Library
BM Brost, BA Mosher, KA Davenport
Molecular ecology resources, 2018Wiley Online Library
Molecular techniques for detecting microorganisms, macroorganisms and infectious agents
are susceptible to false‐negative and false‐positive errors. If left unaddressed, these
observational errors may yield misleading inference concerning occurrence, prevalence,
sensitivity, specificity and covariate relationships. Occupancy models are widely used to
account for false‐negative errors and more recently have even been used to address false‐
positive errors, too. Current modelling options assume false‐positive errors only occur in …
Abstract
Molecular techniques for detecting microorganisms, macroorganisms and infectious agents are susceptible to false‐negative and false‐positive errors. If left unaddressed, these observational errors may yield misleading inference concerning occurrence, prevalence, sensitivity, specificity and covariate relationships. Occupancy models are widely used to account for false‐negative errors and more recently have even been used to address false‐positive errors, too. Current modelling options assume false‐positive errors only occur in truly negative samples, an assumption that yields biased inference concerning detection because a positive sample could be classified as such not because the target agent was successfully detected, but rather due to a false‐positive test result. We present an extension to the occupancy modelling framework that allows false‐positive errors in both negative and positive samples, thereby providing unbiased inference concerning occurrence and detection, as well as reliable conclusions about the efficacy of sampling designs, handling protocols and diagnostic tests. We apply the model to simulated data, showing that it recovers known parameters and outperforms other approaches that are commonly used when confronted with observation errors. We then apply the model to an experimental data set on Batrachochytrium dendrobatidis, a pathogenic fungus that is implicated in the global decline or extinction of hundreds of amphibian species. The model‐based approach we present is not only useful for obtaining reliable inference when data are contaminated with observational errors, but also eliminates the need for establishing arbitrary thresholds or decision rules that have hidden and unintended consequences.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果