Time series classification is an important model in data mining. It involves assigning a class label to a test instance based on the training data with known class labels. Most previous studies developed time series classifiers by disregarding the fuzzy nature of events (i.e., events with similar values may belong to different classes) within the data. Consequently, these studies suffered from performance issues, including decreased accuracy and increased memory, runtime, and energy requirements. With this motivation, this paper proposes a novel fuzzy nearest neighbor classifier for time series data. The basic idea of our classifier is to transform the very large training data into a relatively small representative training data and use it to label a test instance by employing a new fuzzy distance measure known as Ravi. Experimental results on real world benchmark datasets demonstrate that the proposed classifier outperforms the current parameter-free time series classifiers and also the popular deep learning techniques.