Further growth of computing performance has been started to be limited due to increasing energy consumption of cloud data centers. Therefore, it is important to pay attention to the resource management. Dynamic virtual machines consolidation is a successful approach to improve the utilization of resources and energy efficiency in cloud environments. Consequently, optimizing the online energy-performance trade off directly influences Quality of Service (QoS). In this paper, a novel approach known as Percentage of Overload Time Fraction Threshold (POTFT) is proposed that decides to migrate a Virtual Machine (VM) if the current Overload Time Fraction (OTF) value of Physical Machine (PM) exceeds the defined percentage of maximum allowed OTF value to avoid exceeding the maximum allowed resulting OTF value after a decision of VM migration or during VM migration. The proposed POTFT algorithm is also combined with VM quiescing to maximize the time until migration, while meeting QoS goal. A number of benchmark PM overload detection algorithms is implemented using different parameters to compare with POTFT with and without VM quiescing. We evaluate the algorithms through simulations with real world workload traces and results show that the proposed approaches outperform the benchmark PM overload detection algorithms. The results also show that proposed approaches lead to better time until migration by keeping average resulting OTF values less than allowed values. Moreover, POTFT algorithm with VM quiescing is able to minimize number of migrations according to QoS requirements and meet OTF constraint with a few quiescings.