A novel tool for supervised segmentation using 3D slicer

D Chalupa, J Mikulka - Symmetry, 2018 - mdpi.com
Symmetry, 2018mdpi.com
The rather impressive extension library of medical image-processing platform 3D Slicer
lacks a wide range of machine-learning toolboxes. The authors have developed such a
toolbox that incorporates commonly used machine-learning libraries. The extension uses a
simple graphical user interface that allows the user to preprocess data, train a classifier, and
use that classifier in common medical image-classification tasks, such as tumor staging or
various anatomical segmentations without a deeper knowledge of the inner workings of the …
The rather impressive extension library of medical image-processing platform 3D Slicer lacks a wide range of machine-learning toolboxes. The authors have developed such a toolbox that incorporates commonly used machine-learning libraries. The extension uses a simple graphical user interface that allows the user to preprocess data, train a classifier, and use that classifier in common medical image-classification tasks, such as tumor staging or various anatomical segmentations without a deeper knowledge of the inner workings of the classifiers. A series of experiments were carried out to showcase the capabilities of the extension and quantify the symmetry between the physical characteristics of pathological tissues and the parameters of a classifying model. These experiments also include an analysis of the impact of training vector size and feature selection on the sensitivity and specificity of all included classifiers. The results indicate that training vector size can be minimized for all classifiers. Using the data from the Brain Tumor Segmentation Challenge, Random Forest appears to have the widest range of parameters that produce sufficiently accurate segmentations, while optimal Support Vector Machines’ training parameters are concentrated in a narrow feature space.
MDPI
以上显示的是最相近的搜索结果。 查看全部搜索结果