This paper reviews fiber metal laminates (FMLs) with a focus on hybrid titanium composite laminates (HTCLs). FMLs are high-performance hybrid structures based on alternating stacked arrangements of fiber-reinforced polymer composite (FRPC) plies and metal alloy sheets. The mechanical performance potential of FMLs inspired an investigation into new composites, metals, and adhesive systems to further improve their mechanical properties and to reduce the weight of these structures. HTCLs offer better advantages when compared to traditional FMLs and FRPCs, especially in aeronautical, marine, military, and offshore applications both at room and elevated temperatures as well as harsh environmental conditions. They are outstanding in terms of stiffness, yield stress, fatigue, and high-velocity impact properties; however, there are some challenges regarding fabrication, surface treatment, and mechanical properties of such structures, which need to be further addressed. Due to the lack of consolidated research surrounding HTCLs, a review is necessary for effective comparison.