We introduce a statistical, process-oriented metadata model to describe the process of medical research data collection, management, results analysis and dissemination. Our approach explicitly provides a structure for pieces of information used in Clinical Study Data Management Systems, enabling a more active role for any associated metadata. Using the object-oriented paradigm, we describe the classes of our model that participate during the design of a clinical trial and the subsequent collection and management of the relevant data. The advantage of our approach is that we focus on presenting the structural inter-relation of these classes when used during datasets manipulation by proposing certain transformations that model the simultaneous processing of both data and metadata. Our solution reduces the possibility of human errors and allows for the tracking of all changes made during datasets lifecycle. The explicit modeling of processing steps improves data quality and assists in the problem of handling data collected in different clinical trials. The case study illustrates the applicability of the proposed framework demonstrating conceptually the simultaneous handling of datasets collected during two randomized clinical studies. Finally, we provide the main considerations for implementing the proposed framework into a modern Metadata-enabled Information System.