Animals, especially mammals like bats and dolphins, use acoustic waves that vary in frequency, signal duration, and intensity, for navigation and tracking. The directionality of acoustic waves has also been long used for localization by human beings. The term `echolocation' was coined by Donald R. Griffin, where he discusses ship captains exploiting sound to ascertain the ship's surroundings and avoid obstacles in low-visibility environments. Acoustic sensors can provide a low-cost, size, weight, and power (C-SWaP) navigation solution, which is scalable and robust. Moreover, acoustic sensors have the capability to provide high-resolution spatial information at short distance range. This paper presents a novel acoustic positioning and navigation system for a micro aerial vehicle. Flight tests are performed to evaluate the system, where the performance of the acoustic system is compared with a motion capture system.