Actin binding GFP allows 4D in vivo imaging of myofilament dynamics in the zebrafish heart and the identification of Erbb2 signaling as a remodeling factor of myofibril …

S Reischauer, R Arnaout, R Ramadass… - Circulation …, 2014 - Am Heart Assoc
Circulation research, 2014Am Heart Assoc
Rationale: Dilated cardiomyopathy is a leading cause of congestive heart failure and a
debilitating complication of antineoplastic therapies. Despite disparate causes for dilated
cardiomyopathy, maladaptive cardiac remodeling and decreased systolic function are
common clinical consequences, begging an investigation of in vivo contractile dynamics in
development and disease, one that has been impossible to date. Objective: To image
myocardial contractile filament dynamics in vivo and to assess potential causes of dilated …
Rationale
Dilated cardiomyopathy is a leading cause of congestive heart failure and a debilitating complication of antineoplastic therapies. Despite disparate causes for dilated cardiomyopathy, maladaptive cardiac remodeling and decreased systolic function are common clinical consequences, begging an investigation of in vivo contractile dynamics in development and disease, one that has been impossible to date.
Objective
To image myocardial contractile filament dynamics in vivo and to assess potential causes of dilated cardiomyopathy in antineoplastic therapies targeting the epidermal growth factor receptor Erbb2.
Methods and Results
We generated a transgenic zebrafish line expressing an actin-binding green fluorescent protein in cardiomyocytes, allowing an in vivo imaging of myofilaments. Analysis of this line revealed architectural differences in myofibrils of the distinct cardiomyocyte subtypes. We used this model to investigate the effects of Erbb2 signaling on myofibrillar organization because drugs targeting ERBB2 (HER2/NEU) signaling, a mainstay of breast cancer chemotherapy, cause dilated cardiomyopathy in many patients. High-resolution in vivo imaging revealed that Erbb2 signaling regulates a switch between a dense apical network of filamentous myofibrils and the assembly of basally localized myofibrils in ventricular cardiomyocytes.
Conclusions
Using this novel line, we compiled a reference for myofibrillar microarchitecture among myocardial subtypes in vivo and at different developmental stages, establishing this model as a tool to analyze in vivo cardiomyocyte contractility and remodeling for a broad range of cardiovascular questions. Furthermore, we applied this model to study Erbb2 signaling in cardiomyopathy. We show a direct link between Erbb2 activity and remodeling of myofibrils, revealing an unexpected mechanism with potentially important implications for prevention and treatment of cardiomyopathy.
Am Heart Assoc
以上显示的是最相近的搜索结果。 查看全部搜索结果