Active thermal control for reliability improvement of MOS-gated power devices

A Soldati, C Concari, F Dossena… - IECON 2017-43rd …, 2017 - ieeexplore.ieee.org
A Soldati, C Concari, F Dossena, D Barater, F Iannuzzo, F Blaabjerg
IECON 2017-43rd Annual Conference of the IEEE Industrial …, 2017ieeexplore.ieee.org
This paper proposes an Active Thermal Control (ATC) method for MOS-gated power
switches aimed at reducing temperature swing amplitude during operation. It leverages on
the fact that thermal cycle amplitude of many actuation system components (such as power
devices) has a large impact on the system reliability and lifetime. These figures can then be
improved, which eases the adoption of electrification in markets, such as transportation,
where they are still below target values. The proposed ATC method leaves electric load …
This paper proposes an Active Thermal Control (ATC) method for MOS-gated power switches aimed at reducing temperature swing amplitude during operation. It leverages on the fact that thermal cycle amplitude of many actuation system components (such as power devices) has a large impact on the system reliability and lifetime. These figures can then be improved, which eases the adoption of electrification in markets, such as transportation, where they are still below target values. The proposed ATC method leaves electric load parameters untouched, while acting dynamically on gate parameters, namely voltage and resistance. A model-predictive control (MPC) strategy is used to determine the most suitable parameters to use. Simulations of the control scheme are presented first, to predict the potential benefits on temperature swing amplitude, and the consequent improvements in terms of device lifetime are inferred, using literature models. Then, experimental proof of concept is presented and discussed, together with its limitations and drawbacks.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果