Aircraft engine particulate matter emissions from sustainable aviation fuels: Results from ground-based measurements during the NASA/DLR campaign ECLIF2/ND …

T Schripp, BE Anderson, U Bauder, B Rauch… - Fuel, 2022 - Elsevier
T Schripp, BE Anderson, U Bauder, B Rauch, JC Corbin, GJ Smallwood, P Lobo
Fuel, 2022Elsevier
The use of alternative jet fuels by commercial aviation has increased substantially in recent
years. Beside the reduction of carbon dioxide emission, the use of sustainable aviation fuels
(SAF) may have a positive impact on the reduction of particulate emissions. This study
summarizes the results from a ground-based measurement activity conducted in January
2018 as part of the ECLIF2/ND-MAX campaign in Ramstein, Germany. Two fossil reference
kerosenes and three different blends with the renewable fuel component HEFA-SPK …
Abstract
The use of alternative jet fuels by commercial aviation has increased substantially in recent years. Beside the reduction of carbon dioxide emission, the use of sustainable aviation fuels (SAF) may have a positive impact on the reduction of particulate emissions. This study summarizes the results from a ground-based measurement activity conducted in January 2018 as part of the ECLIF2/ND-MAX campaign in Ramstein, Germany. Two fossil reference kerosenes and three different blends with the renewable fuel component HEFA-SPK (Hydroprocessed Esters and Fatty Acids Synthetic Paraffinic Kerosene) were burned in an A320 with V2527-A5 engines to investigate the effect of fuel naphthalene/aromatic content and the corresponding fuel hydrogen content on non-volatile particle number and mass emissions. Reductions up to 70% in non-volatile particle mass emission compared to the fossil reference fuel were observed at low power settings. The reduction trends to decrease with increasing power settings. The fuels showed a decrease in particle emission with increasing fuel hydrogen content. Consequently, a second fossil fuel with similar hydrogen content as one of the HEFA blends featured similar reduction factors in particle mass and number. Changes in the fuel naphthalene content had significant impact on the particle number emission. A comparison to in-flight emission data shows similar trends at cruise altitudes. The measurements highlight the importance of individual fuel components in regulating engine emissions, particularly at the low thrust settings typically employed during ground operations (e.g. during idle and taxi). Therefore, when selecting and mixing SAF blends to meet present fuel-certification standards, attention should be paid to minimizing complex aromatic content to achieve the greatest possible air quality and climate benefits.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果