Ambiguous risk measures and optimal robust portfolios

GC Calafiore - SIAM Journal on Optimization, 2007 - SIAM
SIAM Journal on Optimization, 2007SIAM
This paper deals with a problem of guaranteed (robust) financial decision-making under
model uncertainty. An efficient method is proposed for determining optimal robust portfolios
of risky financial instruments in the presence of ambiguity (uncertainty) on the probabilistic
model of the returns. Specifically, it is assumed that a nominal discrete return distribution is
given, while the true distribution is only known to lie within a distance d from the nominal
one, where the distance is measured according to the Kullback–Leibler divergence. The …
This paper deals with a problem of guaranteed (robust) financial decision-making under model uncertainty. An efficient method is proposed for determining optimal robust portfolios of risky financial instruments in the presence of ambiguity (uncertainty) on the probabilistic model of the returns. Specifically, it is assumed that a nominal discrete return distribution is given, while the true distribution is only known to lie within a distance d from the nominal one, where the distance is measured according to the Kullback–Leibler divergence. The goal in this setting is to compute portfolios that are worst-case optimal in the mean-risk sense, that is, to determine portfolios that minimize the maximum with respect to all the allowable distributions of a weighted risk-mean objective. The analysis in the paper considers both the standard variance measure of risk and the absolute deviation measure.
Society for Industrial and Applied Mathematics
以上显示的是最相近的搜索结果。 查看全部搜索结果