Internet-of-Things (IoT) applications have sources sense and send their measurement updates over the Internet to a monitor (control station) for real-time monitoring and actuation. Ideally, these updates would be delivered fresh, at a high rate constrained only by the supported sensing rate. However, such a rate may lead to network congestion related delays in delivery of updates at the monitor that make the freshest update at the monitor unacceptably old for the application. Alternately, at low rates, while updates arrive at the monitor with smaller delays, new updates arrive infrequently. Thus, both low and high rates may lead to an undesirably aged freshest update at the monitor. We propose a novel transport layer protocol, namely the Age Control Protocol (ACP), which enables timely delivery of such updates to monitors over the Internet in a network-transparent manner. ACP adapts the rate of updates from a source such that the average age of updates at the monitor is minimized. We detail the protocol and the proposed control algorithm. We demonstrate its efficacy using extensive simulations and realworld experiments, including wireless access for the sources and an end-to-end connection with multiple hops to the monitor.