Approximate spacetime symmetries and conservation laws

AI Harte - Classical and quantum gravity, 2008 - iopscience.iop.org
Classical and quantum gravity, 2008iopscience.iop.org
A notion of geometric symmetry is introduced that generalizes the classical concepts of
Killing fields and other affine collineations. There is a sense in which flows under these new
vector fields minimize deformations of the connection near a specified observer. Any exact
affine collineations that may exist are special cases. The remaining vector fields can all be
interpreted as analogs of Poincaré and other well-known symmetries near timelike
worldlines. Approximate conservation laws generated by these objects are discussed for …
Abstract
A notion of geometric symmetry is introduced that generalizes the classical concepts of Killing fields and other affine collineations. There is a sense in which flows under these new vector fields minimize deformations of the connection near a specified observer. Any exact affine collineations that may exist are special cases. The remaining vector fields can all be interpreted as analogs of Poincaré and other well-known symmetries near timelike worldlines. Approximate conservation laws generated by these objects are discussed for both geodesics and extended matter distributions. One example is a generalized Komar integral that may be taken to define the linear and angular momenta of a spacetime volume as seen by a particular observer. This is evaluated explicitly for a gravitational plane wave spacetime.
iopscience.iop.org
以上显示的是最相近的搜索结果。 查看全部搜索结果