This investigation has assessed natural product antifouling performance of an isolated compound from a terrestrial source against marine biofilm forming bacteria, Cobetia marina and Marinobacter hydrocarbonoclasticus. Novel bioassay protocols using the hydrodynamic system and its well plate microfluidics capability were developed to test the in situ antifouling efficacy of the natural product against biofilm attachment under two shear stresses (0.07 and 0.3 Pa). The hydrodynamic results allowed for the first time the direct observation of the natural product influence on newly attached marine biofilms and the evolution of the antifouling Affect with time. Biofilm attachment behaviour appeared to be markedly different in the presence of the natural product, illustrated by limited cluster and extracellular polymeric substance formation which suggests an interference of the bacterial attachment mechanisms. Ultimately, this is fundamental in developing greater understanding of the biofilm kinetics. These observations were confirmed using epifluoresence and confocal microscopy, with the additional corroborative data on bacterial cell integrity using the LIVE / DEAD nucleic acid kit.