Asymmetric hybrid silica nanomotors for capture and cargo transport: towards a novel motion‐based DNA sensor

J Simmchen, A Baeza, D Ruiz, MJ Esplandiu… - Small, 2012 - Wiley Online Library
Small, 2012Wiley Online Library
An innovative self‐propelled nanodevice able to perform motion, cargo transport, and target
recognition is presented. The system is based on a mesoporous motor particle, which is
asymmetrically functionalized by the attachment of single‐stranded DNA onto one of its
faces, while catalase is immobilized on the other face. This enzyme allows catalytic
decomposition of hydrogen peroxide to oxygen and water, giving rise to the driving force for
the motion of the whole system. Moreover the motor particles are able to capture and …
Abstract
An innovative self‐propelled nanodevice able to perform motion, cargo transport, and target recognition is presented. The system is based on a mesoporous motor particle, which is asymmetrically functionalized by the attachment of single‐stranded DNA onto one of its faces, while catalase is immobilized on the other face. This enzyme allows catalytic decomposition of hydrogen peroxide to oxygen and water, giving rise to the driving force for the motion of the whole system. Moreover the motor particles are able to capture and transport cargo particles functionalized with a noncomplementary single‐stranded DNA molecule, only if a specific oligonucleotide sequence is present in the media. Functionalization with characteristic oligonucleotide sequences in the system implies a potential for further developments for lab‐on‐chip devices with applications in biomedical applications.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果